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Abstract - Machine learning techniques and artificial 
intelligence algorithms have been utilized by several 
studies to improve the accuracy of forecasting earthquake 
events. Due to the complexity of the earthquake dynamics, 
it is difficult to model and simulate by using mathematical 
equations. The main problem is predicting the time, 
location, and magnitude simultaneously. In this study, we 
tried to simplify the problem by using a grid system to 
convert geospatial data into a vector of cells, map 
continuous magnitude into classes and limit the time of 
prediction to a time window of seven days. Hence, we 
changed it to a simple classification model that tries to 
predict the probability of an event with a specific class for 
the next seven days for each region cell. This study used a 
new technique to convert the geospatial data to a temporal 
feature tensor to feed the models. At the modeling stage, 
we tried four machine learning algorithms (SVM, 
Random Forest, LightGBM, KNN). The results showed 
that Random Forest has the best evaluation performance 
among the others, with F1_score values of 0.93 and 0.94 
for positive and negative predictions, respectively. 
 
Index Terms –Earthquake regional forecasts, Machine 
learning, Lookback Period,  

INTRODUCTION 

Earthquake predictions are crucial for hazard and risk 
assessment, well-informed risk management choices, and 
Early Warning Systems (EWS) emergency action. Regarding 
timing, earthquake forecasts may be divided into two broad 
categories: long-term forecasts (made months or years in 
advance) and short-term predictions (hours or days in 
advance). Due to the complexity of earthquake phenomena, 
earthquake prediction is an involute subject. The main 
problem of earthquake forecasting is its complexity of 
magnitude, location, and time of the event [1]. All these 
variables are continuous, and it is impossible to predict them 
all at once. This project aims to solve this problem by utilizing 
a set of techniques to simplify variables and convert them into 
a categorical classification problem.  

Machine learning algorithms have been extensively used 
in several geological applications. Seven classes of ML 
methods have found the most use to date in four topic areas in 
earthquake engineering. The seven classes of ML methods are 
ANN, support vector machine (SVM), response surface 
model (RSM), logistic regression (LR), decision tree (DT) 
and random forest (RF), hybrid methods that couple two or 
more soft computing algorithms, and all other methods (e.g. 

evolutionary computing (EC) and genetic expression 
programming (GEP)) that are not significant in a number of 
applications [2]. We can convert this problem to binary 
classification and use conventional ML algorithms to predict 
the chance of having an event in a specific area [3] [4]. This 
method assumes that  F. Corby suggests that the complex 
motion recorded by geodesists at subduction zones might be 
diagnostic of earthquake imminence [5]. Y. Kagan used only 
past earthquake data to estimate future earthquake rate density 
(probability per unit area, time, and magnitude) on a 0.1- 
degree grid for a region including California and Nevada. 
Their long-term forecast is not explicitly time-dependent but 
can be updated at any time to incorporate information from 
recent earthquakes [6]. 

DATA AND METHOD 

Data collection and analysis 

All data are collected from USGS [7] public data repository 
from 1902 to 2022 for a specific region in southern California 
(see Figure I). This dataset must be requested via a Rest API  
with some limitations for the number of records at each query. 
It needs to be done with a customized script and integrate the 
results in one local data warehouse. The same technique must 
be used to maintain the data and create queries for the model 
in the future. The format of this data is GeoJson and contains 
28 attributes which are summarized in  
 
 

 
FIGURE I 

THE STUDY AREA IN CALIFORNIA. 



The raw dataset contains 901,968 records, and we selected 
five attributes Latitude, Longitude, Depth, Magnitude, and 
Time. The remaining attributes have no relationship to our 
study, because some have been used to calculate the center of 
the event and the accuracy of detecting the magnitude and 
location of occurred earthquakes. The other attributes like 
source, url, and id are administrative objects and do not affect 
the prediction target. Figure II Shows an overview of the raw 
dataset. One observation is the shape of the histogram, which 
is the bell shape. In the normal condition, we expect the right 
skewed magnitude curve. One reason is the increased 
precision and number of seismograph stations over time. The 
older stations could detect the events with magnitude values 
greater than some thresholds, which improved over time. We 
have found the same pattern in several related studies [8] [4]. 
To find the best period, we plot the count of recorded events 
against the time and observe a trend inside the data over time. 
Figure III Shows the count of events has increasing rate after 
the 1970s, which explains the bell shape of the curve. Based 
on this observation, we filter out events older than 1970 to 
have more consistent data. Also, we can see the different 
values between the three classes in terms of events frequency 
over time. Events with higher magnitude have more counts 
when we go back in time, and the events with lower 
magnitude were not detected at the same time, which can be 
evidence of our reason for explaining the bell shape of the 
distribution. 

Data cleaning and outliers 

The preliminary report of data is summarized in Table I. The 
only attribute with missing or out-of-range value is depth. To 
solve this problem, we use a weighted average of depths of 
events in the same cell block. The final report of data is shown 
in Table III. 

TABLE I 
PRELIMINARY REPORT OF THE DATASET 

Attribute Data type Missing Rate 
datetime datetime64[ns] 

 

longitude float64 0 
latitude float64 0 
depth float64 -0.00016 
magnitude float64 0 

 
 

TABLE II 
USGS GEOJSON DATA ATTRIBUTES 

 Attribute Range Description 
1 alert green, yellow, orange, red The alert level from the PAGER earthquake impact scale. 
2 cdi [0.0, 10.0] The maximum reported intensity for the event.  
3 code 

 
An identifying code assigned by the corresponding source for the event. 

4 detail 
 

Link to GeoJSON detail feed from a GeoJSON summary feed. 
5 dmin [0.4, 7.1] Horizontal distance from the epicenter to the nearest station. 
6 felt [44, 843] The total number of felt reports submitted to the DYFI? system. 
7 gap [0.0, 180.0] The largest azimuthal gap between azimuthally adjacent stations (in degrees). 
8 ids 

 
A comma-separated list of event ids that are associated to an event. 

9 mag [-1.0, 10.0] The magnitude for the event. 
10 magType Md, Ml, Ms, Mw, Me, Mi, Mb, 

MLg 
The method or algorithm used to calculate the preferred magnitude for the 
event. 

11 mmi [0.0, 10.0] The maximum estimated instrumental intensity for the event.  
12 net ak, at, ci, hv, ld, mb, nc, nm, 

nn, pr, pt, se, us, uu, uw 
The ID of a data contributor. Identifies the network considered to be the 
preferred source of information for this event. 

13 nst 
 

The total number of seismic stations used to determine earthquake location. 
14 place 

 
Textual description of named geographic region near to the event.  

15 rms [0.13,1.39] The root-mean-square (RMS) travel time residual, in sec, using all weights. 
16 sig [0, 1000] A number describing how significant the event is. Larger numbers indicate a 

more significant event. 
17 sources ,us,nc,ci, A comma-separated list of network contributors. 
18 status automatic, reviewed, 

deleted 
Indicates whether the event has been reviewed by a human. 

19 time 
 

Time when the event occurred. Times are reported in milliseconds. 
20 title 

 
The title of the feed. 

21 tsunami 0,1 This flag is set to 1 for large events in oceanic regions and 0 otherwise. 
22 type earthquake, quarry Type of seismic event. 
23 types 

 
A comma-separated list of product types associated to this event. 

24 tz [-1200, +1200] Time zone offset from UTC in minutes at the event epicenter. 
25 updated 

 
Time when the event was most recently updated. 

26 url 
 

Link to USGS Event Page for event. 
27 longitude [-120.30, -114.30] Decimal degrees longitude. Negative values for western longitudes. 
28 latitude [32.0, 37.5] Decimal degrees latitude. Negative values for southern latitudes. 

 

 
FIGURE II  

RECALL VALUES VS. MEAN OF MAGNITUDE OF THE SAMPLE CELL FOR 

RANDOM FOREST AND LIGHTGBM ALGORITHMS 
 



 
FIGURE III 

DATA DISTRIBUTION AMONG DATE FOR EACH CATEGORY 
 

TABLE III 
DESCRIPTION OF DATASET  

longitude latitude depth magnitude 
count 362850 362850 362850 362850 
mean -117.042 34.336611 5.86 2.08 
std 1.208 1.330851 4.88 0.52 
min -120.3 32 2.83 1.5 
25% -117.852 33.262 2.39 1.7 
50% -116.829 34.179 5.37 1.9 
75% -116.233 35.064 8.57 2.3 
max -114.301 37.5 146.9 7.5 

 

Discretization 
To have more consistent data, we filtered out all events with 
a magnitude value less than 1.5 from the dataset. We 
classified them into three categories A, B, and C. Details of 
the binning and quantity of each group are shown in Table IV. 
Figure III Shows the distribution of filtered data and 
categorized datasets.  

 
TABLE IV  

BINNING AND QUANTITY OF EACH CLASS OF EVENT 

Range Category Portion 

2 – 2.5 A 0.58 

2.5 – 3.5 B 0.32 

3.5 < C 0.05 

 
To have better control of data points, we created a grid to 
discretize the location of events to track and find the 
relationships between neighbor areas for each cell. The grid 
size is 100x100, and the actual cell area is approximately 

10kmx10 km. It is larger and smaller on the south and 
northern boundaries, respectively (see Figure V). 

 

 
FIGURE IV 

DISTRIBUTION OF DATA AFTER FILTERING AND CATEGORIZATION 
 

 
FIGURE V  

A GRID SYSTEM TO AGGREGATE DATA IN INDIVIDUAL CELLS 
 

We also grouped data by week and assigned the week of the 
year to each aggregated data point. This helped us narrow our 
search space (forecasting domain) to one week ahead. At this 
point, we have a dataset with a shape of 347,837x5, which 
contains mode magnitude class, averaged magnitude value, 
average depth, time, and cell indexes (10,000 unique cells 
from 100x100 grid). Then we transformed the dataset by 
adding cell ids as a new index and having a dataset of shape 
2809x10000. Each row contains events for all cells on a 
specific date. We summarized historical data to have an 
overview (see Figure VI). To create this graph, we calculate 



 

 
FIGURE VI  

SUMMARY OF HISTORICAL DATA BASED ON MAXIMUM MAGNITUDE, MEAN DEPTH, AND THE COUNT OF EVENTS 
 

The average depth, the maximum level of recorded 
magnitude, and the count of all events in each cell for the 
entire dates. Also, we will use the cells with the most frequent 
events to select and tune our final model. 

Feature extraction 

Our main assumption was that there are relations between the 
probability of a future event and historical data (a week 
before) for each cell and its neighbors. To find these relations, 
we implemented a system to get neighbors for each cell by a 
given radius. A radius equal to one, means that the eight 
neighbors of the cell, and a radius equal to three is 24 
neighbors by three cell distance (see Figure VII). Then we 
used this neighbor list to select the aggregated values for 
magnitude and depth for each region. We used mean, max, 
and count functions for depth, magnitude value, and event 
occurrence. This method gave us an informative feature set 
that we were able to tune by changing the radius value. The 
final value that we ended up with was four. To label the 
dataset, we used a minimum threshold to assign a Boolean 
value based on the magnitude of the target cell. It means that 
we have no event for any target cell at that time if the 
magnitude value is less than the threshold and vice versa. 
Then we shifted back these target values to one unit (one 
week). At this point, we have a tensor with the shape of 
10,000x2809x13, which are cell_id x date x (12)features + 
label. 
 

 

Train and Test splitting 

We divided the dataset into training and testing with 70% and 
30%, respectively. Then we used 30% of the training section 
to tune the models. This dataset was highly imbalanced, so we 
tried SMOTE method to make train and test datasets with a 
balanced distribution. Figure IX illustrates the results before 
and after implementing the stratification technique. 

 
 

 
 

 
FIGURE VIII 

CONFUSION MATRICES FOR PREDICTIONS OF ALL MODELS 
 

FIGURE VII  
NEIGHBORS BASED ON THEIR DISTANCES (RADIUS) TO THE TARGET CELL 

 



Machine learning models 

We tuned, trained, and tested five machine learning models 
using ten topmost frequent cells with the highest value of 
events count. The evaluation metrics that we used are 
f1_score, Jaccard, precision, and recall for both true and false 
labels. Results are summarized in Table V. Also, the 
confusion matrixes for all models are shown in Figure VIII. 
 

 

 
TABLE V 

THE RESULT AFTER TRAINING CANDIDATE MODELS WITH THE TEN TOPMOST 

FREQUENT CELLS DATA 
Evaluation metric Dummy SVM R.F. LGBM KNN 

F1_score 
Yes 0.5 0.72 0.93 0.93 0.87 
No 0.5 0.65 0.94 0.93 0.87 

Jaccard 
Yes 0.34 0.57 0.87 0.88 0.77 
No 0.34 0.49 0.88 0.87 0.76 

Precision Yes 0.5 0.67 0.99 0.89 0.86 
No 0.5 0.73 0.89 0.97 0.87 

Recall Yes 0.5 0.79 0.88 0.98 0.88 
No 0.5 0.59 0.99 0.89 0.85 

 
According to preliminary results, we had two options with the 
highest evaluation performance; Random Forest and 
LightGBM. After another step of the investigation, we have 
found that The Random Forest model has missed events with 
low values of magnitude (see Figure X), which is not essential 
if we ignore them in real life because, in trade between 
precision and recall, we put more attention on events with a 
higher magnitude which Random Forest output covers the 
majority of them. Thus, we used the Random Forest algorithm 
for the rest of the cells.  

 
 

RESULTS 

We run the tuned Random Forest algorithm for all 10,000 
cells in dataset. For each cell, we create a list of neighbors 
with radius size of one, two, three and four, which provide us 
a set of {8, 16, 24, 32} neighbors lists, respectively.  We use 
these lists to aggregate data as we explained before. We added 
a condition to filter feature list based on their size. We only 
considered the cells with a magnitude value of 2.5 or above. 
After running the model for all remaining cells, we get 660 
cells with enough data to forecast the probability of next 
week’s earthquake. Then we get the mean of evaluation 
metrics for each cell with at least one prediction. In Figure XI 
each pixel represents the mean value of each evaluation 
metric in two labels positive and negative separately. Overall 
performance of the model is summarized in Table VI. 
 

TABLE VI 
FINAL EVALUATION VALUES 

Evaluation Metrics Value 
Yes_f1 0.909 
Yes_jacard 0.851 
Yes_recall 0.895 
Yes_precision 0.954 
No_f1 0.917 
No_jacard 0.862 
No_recall 0.940 
No_precision 0.921 

 
 

FIGURE X  
RECALL VALUES VS. MEAN OF MAGNITUDE OF THE SAMPLE CELL FOR 

RANDOM FOREST AND LIGHTGBM ALGORITHMS 
 

FIGURE IX  
DISTRIBUTION OF LABELED TARGETS BEFORE AND AFTER SMOTE 

 



 

 
FIGURE XI  

AVERAGE VALUES OF EVALUATION METRICS  FOR EACH CELL WITH 

POSITIVE AND NEGATIVE LABELS 

CONCLUSION 

Forecasting an earthquake in advance has uncountable 
benefits, from saving individual lives and properties to 
reducing recovery time. Based on the nature of earthquake 
dynamics, having a robust and reliable model that receives 
new data and predicts the probability of a future event’s exact 
time, location, and magnitude simultaneously is not easy. 
Using some simplification techniques can help us to 
overcome this problem. In this study, we utilized a simple 
system to extract and create new features from adjacent 
location attributes and feed the models with them. With this 
method, we could predict earthquake events seven days ahead 
for each block in southern California's specific region. This 
model can hit positive events with a recall value of 0.88 by 
0.99 accuracy of positive precision, which can be used for 
EWS feeding data. This model can be improved in many 
aspects. We only considered the time window of seven days, 
which can be changed to any time period. Still, the issue is 
that we lose available data to train the model by decreasing 
the window size. By increasing this value, we lose the 
valence of forecasting. For example, it is worthless to forecast 
the probability of an earthquake event by a window size of 
six months. The other parameter is how we find the related 

neighbors. Currently, it is a simple squared shape of adjacent 
cells, but it can be converted to other types of distances by 
considering the soil and other tectonic attributes. It can be 
automatically updated weekly in response to the evolving 
nature of the region's tectonics. 
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